Exploiting Symmetries in the Computation of Graver Bases

نویسنده

  • Raymond Hemmecke
چکیده

Many challenging Graver bases computations, like for multi-way tables in statistics, have a highly symmetric problem structure that is not exploited so far computationally. In this paper we present a Graver basis algorithm for sublattices of Zn that exploits existing symmetry.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A degree bound for the Graver basis of non-saturated lattices

Let $L$ be a lattice in $ZZ^n$ of dimension $m$. We prove that there exist integer constants $D$ and $M$ which are basis-independent such that the total degree of any Graver element of $L$ is not greater than $m(n-m+1)MD$. The case $M=1$ occurs precisely when $L$ is saturated, and in this case the bound is a reformulation of a well-known bound given by several authors. As a corollary, we show t...

متن کامل

Graver Bases and Universal Gröbner Bases for Linear Codes

Linear codes over any finite field can be associated to binomial ideals. Focussing on two specific instances, called the code ideal and the generalized code ideal, we present how these binomial ideals can be computed from toric ideals by substituting some variables. Drawing on this result we further show how their Graver bases as well as their universal Gröbner bases can be computed.

متن کامل

A finiteness theorem for Markov bases of hierarchical models

We show that the complexity of the Markov bases of multidimensional tables stabilizes eventually if a single table dimension is allowed to vary. In particular, if this table dimension is beyond a computable bound, the Markov bases consist of elements of Markov bases of smaller tables. We give an explicit formula for this bound in terms of Graver bases. We also compute these Markov and Graver co...

متن کامل

Multiplicity result to some Kirchhoff-type biharmonic equation involving exponential growth conditions

In this paper‎, ‎we prove a multiplicity result for some biharmonic elliptic equation of Kirchhoff type and involving nonlinearities with critical exponential growth at infinity‎. ‎Using some variational arguments and exploiting the symmetries of the problem‎, ‎we establish a multiplicity result giving two nontrivial solutions‎.

متن کامل

On the Universal Gröbner Bases of Varieties of Minimal Degree

A universal Gröbner basis of an ideal is the union of all its reduced Gröbner bases. It is contained in the Graver basis, the set of all primitive elements. Obtaining an explicit description of either of these sets, or even a sharp degree bound for their elements, is a nontrivial task. In their ’95 paper, Graham, Diaconis and Sturmfels give a nice combinatorial description of the Graver basis f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004