Exploiting Symmetries in the Computation of Graver Bases
نویسنده
چکیده
Many challenging Graver bases computations, like for multi-way tables in statistics, have a highly symmetric problem structure that is not exploited so far computationally. In this paper we present a Graver basis algorithm for sublattices of Zn that exploits existing symmetry.
منابع مشابه
A degree bound for the Graver basis of non-saturated lattices
Let $L$ be a lattice in $ZZ^n$ of dimension $m$. We prove that there exist integer constants $D$ and $M$ which are basis-independent such that the total degree of any Graver element of $L$ is not greater than $m(n-m+1)MD$. The case $M=1$ occurs precisely when $L$ is saturated, and in this case the bound is a reformulation of a well-known bound given by several authors. As a corollary, we show t...
متن کاملGraver Bases and Universal Gröbner Bases for Linear Codes
Linear codes over any finite field can be associated to binomial ideals. Focussing on two specific instances, called the code ideal and the generalized code ideal, we present how these binomial ideals can be computed from toric ideals by substituting some variables. Drawing on this result we further show how their Graver bases as well as their universal Gröbner bases can be computed.
متن کاملA finiteness theorem for Markov bases of hierarchical models
We show that the complexity of the Markov bases of multidimensional tables stabilizes eventually if a single table dimension is allowed to vary. In particular, if this table dimension is beyond a computable bound, the Markov bases consist of elements of Markov bases of smaller tables. We give an explicit formula for this bound in terms of Graver bases. We also compute these Markov and Graver co...
متن کاملMultiplicity result to some Kirchhoff-type biharmonic equation involving exponential growth conditions
In this paper, we prove a multiplicity result for some biharmonic elliptic equation of Kirchhoff type and involving nonlinearities with critical exponential growth at infinity. Using some variational arguments and exploiting the symmetries of the problem, we establish a multiplicity result giving two nontrivial solutions.
متن کاملOn the Universal Gröbner Bases of Varieties of Minimal Degree
A universal Gröbner basis of an ideal is the union of all its reduced Gröbner bases. It is contained in the Graver basis, the set of all primitive elements. Obtaining an explicit description of either of these sets, or even a sharp degree bound for their elements, is a nontrivial task. In their ’95 paper, Graham, Diaconis and Sturmfels give a nice combinatorial description of the Graver basis f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004